X-ray computed tomography
From Wikipedia, the free encyclopedia
"CAT scan" redirects here. For the Transformers character, see CatSCAN.
For industrial CT scanning, see Industrial CT Scanning.
Computed tomography (CT) is amedical imagingmethod employingtomography created by computer processing.[1]Digital geometry processing is used to generate a three-dimensional image of the inside of an object from a large series of two-dimensional X-rayimages taken around a single axis of rotation.[2]
CT produces a volume of data which can be manipulated, through a process known as "windowing", in order to demonstrate various bodily structures based on their ability to block the X-ray beam. Although historically the images generated were in the axial or transverse plane, orthogonal to the long axis of the body, modern scanners allow this volume of data to be reformatted in various planes or even as volumetric (3D) representations of structures. Although most common in medicine, CT is also used in other fields, such as nondestructive materials testing. Another example is archaeological uses such as imaging the contents of sarcophagi or the DigiMorph project at the University of Texas at Austin which uses a CT scanner to study biological and paleontologicalspecimens.
Usage of CT has increased dramatically over the last two decades[3]. An estimated 72 million scans were performed in the United States in 2007.[4]
Contents[hide] |
[edit]Terminology
The word "tomography" is derived from the Greek tomos (slice) and graphein (to write). Computed tomography was originally known as the "EMI scan" as it was developed at a research branch of EMI, a company best known today for its music and recording business. It was later known as computed axial tomography (CAT or CT scan) and body section röntgenography.
Although the term "computed tomography" could be used to describe positron emission tomography and single photon emission computed tomography, in practice it usually refers to the computation of tomography from X-ray images, especially in older medical literature and smaller medical facilities.
In MeSH, "computed axial tomography" was used from 1977–79, but the current indexing explicitly includes "X-ray" in the title.[5]
[edit]History
This section needs additional citations forverification. Please help improve this article by adding reliable references. Unsourced material may be challenged andremoved. (September 2009) |
In the early 1900s, the Italian radiologist Alessandro Vallebona proposed a method to represent a single slice of the body on the radiographic film. This method was known astomography. The idea is based on simple principles of projective geometry: moving synchronously and in opposite directions the X-ray tube and the film, which are connected together by a rod whose pivot point is the focus; the image created by the points on thefocal plane appears sharper, while the images of the other points annihilate as noise. This is only marginally effective, as blurring occurs only in the "x" plane. There are also more complex devices which can move in more than one plane and perform more effective blurring.
Tomography had been one of the pillars of radiologic diagnostics until the late 1970s, when the availability of minicomputers and of the transverse axial scanning method, this last due to the work of Godfrey Hounsfield and South African-born Allan McLeod Cormack, gradually supplanted it as the modality of CT.
The first commercially viable CT scanner was invented by Sir Godfrey Hounsfieldin Hayes, United Kingdom at EMI Central Research Laboratories using X-rays. Hounsfield conceived his idea in 1967,[6] and it was publicly announced in 1972.Allan McLeod Cormack of Tufts University in Massachusetts independently invented a similar process, and both Hounsfield and Cormack shared the 1979Nobel Prize in Medicine.[7]
The original 1971 prototype took 160 parallel readings through 180 angles, each 1° apart, with each scan taking a little over 5 minutes. The images from these scans took 2.5 hours to be processed by algebraic reconstruction techniques on a large computer. The scanner had a single photomultiplier detector, and operated on the Translate/Rotate principle.
It has been claimed that thanks to the success of The Beatles, EMI could fund research and build early models for medical use.[8] The first production X-ray CT machine (in fact called the "EMI-Scanner") was limited to making tomographic sections of the brain, but acquired the image data in about 4 minutes (scanning two adjacent slices), and the computation time (using a Data General Novaminicomputer) was about 7 minutes per picture. This scanner required the use of a water-filled Perspex tank with a pre-shaped rubber "head-cap" at the front, which enclosed the patient's head. The water-tank was used to reduce the dynamic range of the radiation reaching the detectors (between scanning outside the head compared with scanning through the bone of the skull). The images were relatively low resolution, being composed of a matrix of only 80 x 80 pixels. The first EMI-Scanner was installed in Atkinson Morley Hospital inWimbledon, England, and the first patient brain-scan was made with it in 1972. In the U.S., the first installation was at the Mayo Clinic. As a tribute to the impact of this system on medical imaging the Mayo Clinic has an EMI scanner on display in the Radiology Department.
The first CT system that could make images of any part of the body and did not require the "water tank" was the ACTA (Automatic Computerized Transverse Axial) scanner designed by Robert S. Ledley, DDS, at Georgetown University. This machine had 30 photomultiplier tubes as detectors and completed a scan in only 9 translate/rotate cycles, much faster than the EMI-scanner. It used aDEC PDP11/34 minicomputer both to operate the servo-mechanisms and to acquire and process the images. The Pfizer drug company acquired the prototype from the university, along with rights to manufacture it. Pfizer then began making copies of the prototype, calling it the "200FS" (FS meaning Fast Scan), which were selling as fast as they could make them. This unit produced images in a 256×256 matrix, with much better definition than the EMI-Scanner's 80×80.
[edit]Previous studies
A form of tomography can be performed by moving the X-ray source and detector during an exposure. Anatomy at the target level remains sharp, while structures at different levels are blurred. By varying the extent and path of motion, a variety of effects can be obtained, with variable depth of field and different degrees of blurring of "out of plane" structures.[9]:25
Although largely obsolete, conventional tomography is still used in specific situations such as dental imaging (orthopantomography) or in intravenous urography.
[edit]Tomosynthesis
Digital tomosynthesis combines digital image capture and processing with simple tube/detector motion as used in conventional radiographic tomography. Although there are some similarities to CT, it is a separate technique. In CT, the source/detector makes a complete 360-degree rotation about the subject obtaining a complete set of data from which images may be reconstructed. In digital tomosynthesis, only a small rotation angle (e.g., 40 degrees) with a small number of discrete exposures (e.g., 10) are used. This incomplete set of data can be digitally processed to yield images similar to conventional tomography with a limited depth of field. However, because the image processing is digital, a series of slices at different depths and with different thicknesses can be reconstructed from the same acquisition, saving both time and radiation exposure.
Because the data acquired is incomplete, tomosynthesis is unable to offer the extremely narrow slice widths that CT offers. However, higher resolution detectors can be used, allowing very-high in-plane resolution, even if the Z-axis resolution is poor. The primary interest in tomosynthesis is in breast imaging, as an extension to mammography, where it may offer better detection rates with little extra increase in radiation exposure.
Reconstruction algorithms for tomosynthesis are significantly different from conventional CT, because the conventional filtered back projection algorithm requires a complete set of data. Iterative algorithms based upon expectation maximization are most commonly used, but are extremely computationally intensive. Some manufacturers have produced practical systems using off-the-shelf GPUs to perform the reconstruction.
[edit]Diagnostic use
Since its introduction in the 1970s, CT has become an important tool in medical imaging to supplement X-rays and medical ultrasonography. It has more recently begun to also be used for preventive medicine or screening for disease, for example CT colonography for patients with a high risk of colon cancer, or full-motion heart scans for patients with high risk of heart disease. A number of institutions offer full-body scans for the general population. However, this is a controversial practice, given its lack of proven benefit, cost, radiation exposure, and the risk of finding 'incidental' abnormalities that may trigger additional investigations.
[edit]Head
CT scanning of the head is typically used to detect infarction, tumours,calcifications, haemorrhage and bone trauma.
Of the above, hypodense (dark) structures indicate infraction or tumours, hyperdense (bright) structures indicate calcifications and haemorrhage and bone trauma can be seen as disjunction in bone windows.
Of the above, hypodense (dark) structures indicate infraction or tumours, hyperdense (bright) structures indicate calcifications and haemorrhage and bone trauma can be seen as disjunction in bone windows.
[edit]Chest
This section does not cite any references or sources. Please help improve this article by adding citations toreliable sources. Unsourced material may be challengedand removed. (September 2009) |
CT can be used for detecting both acute and chronic changes in the lungparenchyma, that is, the internals of the lungs. It is particularly relevant here because normal two dimensional x-rays do not show such defects. A variety of different techniques are used depending on the suspected abnormality. For evaluation of chronic interstitial processes (emphysema, fibrosis, and so forth), thin sections with high spatial frequency reconstructions are used—often scans are performed both in inspiration and expiration. This special technique is calledHigh Resolution CT (HRCT). HRCT is normally done with thin section with skipped areas between the thin sections. Therefore it produces a sampling of the lung and not continuous images. Continuous images are provided in a standard CT of the chest.
For detection of airspace disease (such as pneumonia) or cancer, relatively thick sections and general purpose image reconstruction techniques may be adequate. IV contrast may also be used as it clarifies the anatomy and boundaries of the great vessels and improves assessment of the mediastinumand hilar regions for lymphadenopathy; this is particularly important for accurate assessment of cancer.
CT angiography of the chest is also becoming the primary method for detectingpulmonary embolism (PE) and aortic dissection, and requires accurately timed rapid injections of contrast (Bolus Tracking) and high-speed helical scanners. CT is the standard method of evaluating abnormalities seen on chest X-ray and of following findings of uncertain acute significance. Cardiac CTA is now being used to diagnose coronary artery disease.
According to the 2007 New England Journal of Medicine study, 19.2 million (31%) of the 62 million CTs done every year are for lung CTs.
[edit]Pulmonary angiogram
CT pulmonary angiogram (CTPA) is a medical diagnostic test used to diagnose pulmonary embolism (PE). It employs computed tomography to obtain an image of the pulmonary arteries.
It is a preferred choice of imaging in the diagnosis of PE due to its minimally invasive nature for the patient, whose only requirement for the scan is a cannula(usually a 20G).
MDCT (multi detector CT) scanners give the optimum resolution and image quality for this test. Images are usually taken on a 0.625 mm slice thickness, although 2 mm is sufficient. 50–100 mls of contrast is given to the patient at a rate of 4 ml/s. The tracker/locator is placed at the level of the pulmonary arteries, which sit roughly at the level of the carina. Images are acquired with the maximum intensity of radio-opaque contrast in the pulmonary arteries. This is done using bolus tracking.
CT machines are now so sophisticated that the test can be done with a patient visit of 5 minutes with an approximate scan time of only 5 seconds or less.
A normal CTPA scan will show the contrast filling the pulmonary vessels, looking bright white. Ideally the aortashould be empty of contrast, to reduce any partial volume artifact which may result in a false positive. Any mass filling defects, such as an embolus, will appear dark in place of the contrast, filling / blocking the space where blood should be flowing into the lungs.
[edit]Cardiac
With the advent of subsecond rotation combined with multi-slice CT (up to 64-slice), high resolution and high speed can be obtained at the same time, allowing excellent imaging of the coronary arteries (cardiac CT angiography). Images with an even higher temporal resolution can be formed using retrospective ECG gating. In this technique, each portion of the heart is imaged more than once while an ECG trace is recorded. The ECG is then used to correlate the CT data with their corresponding phases of cardiac contraction. Once this correlation is complete, all data that were recorded while the heart was in motion (systole) can be ignored and images can be made from the remaining data that happened to be acquired while the heart was at rest (diastole). In this way, individual frames in a cardiac CT investigation have a better temporal resolution than the shortest tube rotation time.
Because the heart is effectively imaged more than once (as described above), cardiac CT angiography results in a relatively high radiation exposure around 12mSv. For the sake of comparison, a chest X-ray carries a dose of approximately 0.02[10] to 0.2 mSv and natural background radiation exposure is around 0.01 mSv/day. Thus, cardiac CTA is equivalent to approximately 100-600 chest X-rays or over 3 years worth of natural background radiation. Methods are available to decrease this exposure, however, such as prospectively decreasing radiation output based on the concurrently acquired ECG (aka tube current modulation.) This can result in a significant decrease in radiation exposure, at the risk of compromising image quality if there is any arrhythmia during the acquisition. The significance of radiation doses in the diagnostic imaging range has not been proven, although the possibility of inducing an increased cancer risk across a population is a source of significant concern. This potential risk must be weighed against the competing risk of not performing a test and potentially not diagnosing a significant health problem such as coronary artery disease.
It is uncertain whether this modality will replace invasive coronary catheterization. Currently, it appears that the greatest utility of cardiac CT lies in ruling out coronary artery disease rather than ruling it in. This is because the test has a high sensitivity (greater than 90%) and thus a negative test result means that a patient is very unlikely to have coronary artery disease and can be worked up for other causes of their chest symptoms. This is termed a highnegative predictive value. A positive result is less conclusive and often will be confirmed (and possibly treated) with subsequent invasive angiography. The positive predictive value of cardiac CTA is estimated at approximately 82% and the negative predictive value is around 93%.
Dual Source CT scanners, introduced in 2005, allow higher temporal resolutionby acquiring a full CT slice in only half a rotation, thus reducing motion blurring at high heart rates and potentially allowing for shorter breath-hold time. This is particularly useful for ill patients who have difficulty holding their breath or who are unable to take heart-rate lowering medication.
The speed advantages of 64-slice MSCT have rapidly established it as the minimum standard for newly installed CT scanners intended for cardiac scanning. Manufacturers are now actively developing 256-slice and true 'volumetric' scanners, primarily for their improved cardiac scanning performance.
The latest MSCT scanners acquire images only at 70-80% of the R-R interval (late diastole). This prospective gating can reduce effective dose from 10-15mSv to as little as 1.2mSv in follow-up patients acquiring at 75% of the R-R interval. Effective doses at a centre with well trained staff doing coronary imaging can average less than the doses for conventional coronary angiography.
[edit]Abdominal and pelvic
CT is a sensitive method for diagnosis of abdominal diseases. It is used frequently to determine stage of cancer and to follow progress. It is also a useful test to investigate acute abdominal pain (especially of the lower quadrants, whereas ultrasound is the preferred first line investigation for right upper quadrant pain). Renal stones, appendicitis, pancreatitis,diverticulitis, abdominal aortic aneurysm, and bowel obstruction are conditions that are readily diagnosed and assessed with CT. CT is also the first line for detecting solid organ injury after trauma.
Multidetector CT (MDCT) can clearly delineate anatomic structures in the abdomen, which is critical in the diagnosis of internal diaphragmatic and other nonpalpable or unsuspected hernias. MDCT also offers clear detail of the abdominal wall allowing wall hernias to be identified accurately.[11]
Oral and/or rectal contrast may be used depending on the indications for the scan. A dilute (2% w/v) suspension of barium sulfate is most commonly used. The concentrated barium sulfate preparations used for fluoroscopy e.g. barium enema are too dense and cause severe artifacts on CT. Iodinated contrastagents may be used if barium is contraindicated (for example, suspicion of bowel injury). Other agents may be required to optimize the imaging of specific organs, such as rectally administered gas (air or carbon dioxide) or fluid (water) for a colon study, or oral water for a stomach study.
CT has limited application in the evaluation of the pelvis. For the female pelvis in particular, ultrasound and MRI are the imaging modalities of choice. Nevertheless, it may be part of abdominal scanning (e.g. for tumors), and has uses in assessing fractures.
CT is also used in osteoporosis studies and research alongside dual energy X-ray absorptiometry (DXA). Both CT and DXA can be used to assess bone mineral density (BMD) which is used to indicate bone strength, however CT results do not correlate exactly with DXA (the gold standard of BMD measurement). CT is far more expensive, and subjects patients to much higher levels of ionizing radiation, so it is used infrequently.
[edit]Extremities
CT is often used to image complex fractures, especially ones around joints, because of its ability to reconstruct the area of interest in multiple planes. Fractures, ligamentous injuries and dislocations can easily be recognised with a 0.2 mm resolution. [12][13]
[edit]Advantages and hazards
[edit]Advantages over traditional radiography
There are several advantages that CT has over traditional 2D medical radiography. First, CT completely eliminates the superimposition of images of structures outside the area of interest. Second, because of the inherent high-contrast resolution of CT, differences between tissues that differ in physical density by less than 1% can be distinguished. Finally, data from a single CT imaging procedure consisting of either multiple contiguous or one helical scan can be viewed as images in the axial, coronal, or sagittal planes, depending on the diagnostic task. This is referred to as multiplanar reformatted imaging.
CT is regarded as a moderate to high radiation diagnostic technique. While technical advances have improved radiation efficiency, there has been simultaneous pressure to obtain higher-resolution imaging and use more complex scan techniques, both of which require higher doses of radiation. The improved resolution of CT has permitted the development of new investigations, which may have advantages; compared to conventional angiography for example, CT angiography avoids the invasive insertion of an arterial catheter and guidewire; CT colonography (also known as virtual colonoscopy or VC for short) may be as useful as a barium enema for detection of tumors, but may use a lower radiation dose. CT VC is increasingly being used in the UK as a diagnostic test for bowel cancer and can negate the need for a colonoscopy.
The greatly increased availability of CT, together with its value for an increasing number of conditions, has been responsible for a large rise in popularity. So large has been this rise that, in the most recent comprehensive survey in the United Kingdom, CT scans constituted 7% of all radiologic examinations, but contributed 47% of the total collective dose from medical X-ray examinations in 2000/2001.[14] Increased CT usage has led to an overall rise in the total amount of medical radiation used, despite reductions in other areas. In the United States and Japan for example, there were 26 and 64 CT scanners per 1 million population in 1996. In the U.S., there were about 3 million CT scans performed in 1980, compared to an estimated 62 million scans in 2006.[15]
The radiation dose for a particular study depends on multiple factors: volume scanned, patient build, number and type of scan sequences, and desired resolution and image quality. Additionally, two helical CT scanning parameters that can be adjusted easily and that have a profound effect on radiation dose are tube current and pitch.[16]
Computed tomography (CT) scan has been shown to be more accurate than radiographs in evaluating anterior interbody fusion but may still over-read the extent of fusion.[17]
[edit]Safety concerns
The increased use of CT scans has been the greatest in two fields: screening of adults (screening CT of the lung in smokers, virtual colonoscopy, CT cardiac screening and whole-body CT in asymptomatic patients) and CT imaging of children. Shortening of the scanning time to around 1 second, eliminating the strict need for subject to remain still or be sedated, is one of the main reasons for large increase in the pediatric population (especially for the diagnosis ofappendicitis).[15] CT scans of children have been estimated to produce non-negligible increases in the probability of lifetime cancer mortality, leading to calls for the use of reduced current settings for CT scans of children.[18] These calculations are based on the assumption of a linear relationship between radiation dose and cancer risk; this claim is controversial, as some but not all evidence shows that smaller radiation doses are less harmful.[15] Estimated lifetime cancer mortality risks attributable to the radiation exposure from a CT in a 1-year-old are 0.18% (abdominal) and 0.07% (head)—an order of magnitude higher than for adults—although those figures still represent a small increase in cancer mortality over the background rate. In the United States, of approximately 600,000 abdominal and head CT examinations annually performed in children under the age of 15 years, a rough estimate is that 500 of these individuals might ultimately die from cancer attributable to the CT radiation.[19] The additional risk is still very low (0.35%) compared to the background risk of dying from cancer (23%).[19] However, if these statistics are extrapolated to the current number of CT scans, the additional rise in cancer mortality could be 1.5 to 2%. Furthermore, certain conditions can require children to be exposed to multiple CT scans. Again, these calculations can be problematic because the assumptions underlying them could overestimate the risk.[15]
In 2009 a number of studies appeared that further defined the risk of cancer that may be caused by CT scans.[20] One study indicated that radiation by CT scans is often higher and more variable than cited and each of the 19,500 CT scans that are daily performed in the US is equivalent to 30 to 442 chest x-rays in radiation. It has been estimated that CT radiation exposure will result in 29,000 new cancer cases just from the CT scans performed in 2007.[20] The most common cancers caused by CT are thought to be lung cancer, colon cancer andleukemia with younger people and women more at risk. These conclusions, however, are criticized by the American College of Radiology (ACR) that maintains that the life expectancy of CT scanned patients is not that of the general population and that the model of calculating cancer is based on total body radiation exposure and thus faulty.[20]
CT scans can be performed with different settings for lower exposure in children, although these techniques are often not employed. Surveys have suggested that currently, many CT scans are performed unnecessarily. Ultrasound scanning ormagnetic resonance imaging are alternatives (for example, in appendicitis or brain imaging) without the risk of radiation exposure. Although CT scans come with an additional risk of cancer (it can be estimated that the radiation exposure from a full body scan is the same as standing 2.4 km away from the WWIIatomic bomb blasts in Japan[21]), especially in children, the benefits that stem from their use outweighs the risk in many cases.[19] Studies support informing parents of the risks of pediatric CT scanning.[22]
[edit]Typical scan doses
Examination | Typical effective dose(mSv) | (millirem) |
---|---|---|
Chest X-ray | 0.1 | 10 |
Head CT | 1.5[23] | 150 |
Screening mammography | 3[15] | 300 |
Abdomen CT | 5.3[23] | 530 |
Chest CT | 5.8[23] | 580 |
CT colonography (virtual colonoscopy) | 3.6–8.8 | 360–880 |
Chest, abdomen and pelvis CT | 9.9[23] | 990 |
Cardiac CT angiogram | 6.7-13[24] | 670–1300 |
Barium enema | 15[15] | 1500 |
Neonatal abdominal CT | 20[15] | 2000 |
For purposes of comparison, the average background exposure in the UK is 1-3 mSv per year.
[edit]Adverse reactions to contrast agents
This section does not cite any references or sources. Please help improve this article by adding citations toreliable sources. Unsourced material may be challengedand removed. (September 2009) |
Because contrast CT scans rely on intravenously administered contrast agentsin order to provide superior image quality, there is a low but non-negligible level of risk associated with the contrast agents themselves. Many patients report nausea and discomfort, including warmth in the crotch which mimics the sensation of wetting oneself. Certain patients may experience severe and potentially life-threatening allergic reactions to the contrast dye.
The contrast agent may also induce kidney damage. The risk of this is increased with patients who have preexisting renal insufficiency, preexistingdiabetes, or reduced intravascular volume. In general, if a patient has normal kidney function, then the risks of contrast nephropathy are negligible. Patients with mild kidney impairment are usually advised to ensure full hydration for several hours before and after the injection. For moderate kidney failure, the use of iodinated contrast should be avoided; this may mean using an alternative technique instead of CT, e.g., MRI. Paradoxically, patients with severe renal failure requiring dialysis do not require special precautions, as their kidneys have so little function remaining that any further damage would not be noticeable and the dialysis will remove the contrast agent.
[edit]Low-dose CT scan
An important issue within radiology today is how to reduce the radiation dose during CT examinations without compromising the image quality. Generally, higher radiation doses result in higher-resolution images, while lower doses lead to increased image noise and unsharp images. Increased dosage raises the risk of radiation induced cancer — a four-phase abdominal CT gives the same radiation dose as 300 chest x-rays. Several methods exist which can reduce the exposure to ionizing radiation during a CT scan.
- New software technology can significantly reduce the required radiation dose. The software works as a filter that reduces random noise and enhances structures. In this way, it is possible to get high-quality images and at the same time lower the dose by as much as 30 to 70 percent.
- Individualize the examination and adjust the radiation dose to the body type and body organ examined. Different body types and organs require different amounts of radiation.
- Prior to every CT examination, evaluate the appropriateness of the exam whether it is motivated or if another type of examination is more suitable. Higher resolution is not always suitable for any given scenario, such as detection of small pulmonary masses[25]
[edit]Computed tomography versus MRI
Main article: Magnetic resonance imaging#MRI versus CT
The basic mathematics of the 2D-Fourier transform in CT reconstruction is very similar to the 2D-FT NMRI, but the computer data processing in CT does differ in detail, as for example in the case of the volume rendering and artifact elimination algorithms that are specific to CT.[citation needed]
[edit]Process
X-ray slice data is generated using an X-ray source that rotates around the object; X-ray sensors are positioned on the opposite side of the circle from the X-ray source. The earliest sensors were scintillation detectors, with photomultiplier tubes excited by (typically) cesium iodide crystals. Cesium iodide was replaced during the 1980s by ion chambers containing high pressure Xenon gas. These systems were in turn replaced by scintillation systems based on photo diodes instead of photomultipliers and modern scintillation materials with more desirable characteristics. Many data scans are progressively taken as the object is gradually passed through the gantry.
Newer machines with faster computer systems and newer software strategies can process not only individual cross sections but continuously changing cross sections as the gantry, with the object to be imaged, is slowly and smoothly slid through the X-ray circle. These are called helical or spiral CT machines. Their computer systems integrate the data of the moving individual slices to generate three dimensional volumetric information (3D-CT scan), in turn viewable from multiple different perspectives on attached CT workstation monitors. This type of data acquisition requires enormous processing power, as the data are arriving in a continuous stream and must be processed in real-time.
In conventional CT machines, an X-ray tube and detector are physically rotated behind a circular shroud (see the image above right); in the electron beam tomography (EBT) the tube is far larger and higher power to support the high temporal resolution. The electron beam is deflected in a hollow funnel-shaped vacuum chamber. X-rays are generated when the beam hits the stationary target. The detector is also stationary. This arrangement can result in very fast scans, but is extremely expensive.
CT is used in medicine as a diagnostic tool and as a guide for interventional procedures. Sometimes contrast materials such asintravenous iodinated contrast are used. This is useful to highlight structures such as blood vessels that otherwise would be difficult to delineate from their surroundings. Using contrast material can also help to obtain functional information about tissues.
Once the scan data has been acquired, the data must be processed using a form oftomographic reconstruction, which produces a series of cross-sectional images. The most common technique in general use is filtered back projection, which is straight-forward to implement and can be computed rapidly. However, this is not the only technique available: the original EMI scanner solved the tomographic reconstruction problem by linear algebra, but this approach was limited by its high computational complexity, especially given the computer technology available at the time. More recently, manufacturers have developed iterative physical model-based expectation-maximization techniques. These techniques are advantageous because they use an internal model of the scanner's physical properties and of the physical laws of X-ray interactions. By contrast, earlier methods have assumed a perfect scanner and highly simplified physics, which leads to a number of artefacts and reduced resolution - the result is images with improved resolution, reduced noise and fewer artefacts, as well as the ability to greatly reduce the radiation dose in certain circumstances. The disadvantage is a very high computational requirement, which is at the limits of practicality for current scan protocols.
Pixels in an image obtained by CT scanning are displayed in terms of relativeradiodensity. The pixel itself is displayed according to the mean attenuation of the tissue(s) that it corresponds to on a scale from +3071 (most attenuating) to -1024 (least attenuating) on the Hounsfield scale. Pixel is a two dimensional unit based on the matrix size and the field of view. When the CT slice thickness is also factored in, the unit is known as a Voxel, which is a three dimensional unit. The phenomenon that one part of the detector cannot differentiate between different tissues is called the "Partial Volume Effect". That means that a big amount of cartilage and a thin layer of compact bone can cause the same attenuation in a voxel as hyperdense cartilage alone. Water has an attenuation of 0 Hounsfield units (HU) while air is -1000 HU, cancellous bone is typically +400 HU, cranial bone can reach 2000 HU or more (os temporale) and can cause artifacts. The attenuation of metallic implants depends on atomic number of the element used: Titanium usually has an amount of +1000 HU, iron steel can completely extinguish the X-ray and is therefore responsible for well-known line-artifacts in computed tomograms. Artifacts are caused by abrupt transitions between low- and high-density materials, which results in data values that exceed the dynamic range of the processing electronics.
[edit]Artifacts
This section does not cite any references or sources. Please help improve this article by adding citations toreliable sources. Unsourced material may be challengedand removed. (September 2009) |
Although CT is a relatively accurate test, it is liable to produce artifacts, such as the following:[2], Chapters 3 and 5
- Aliasing artifact or streaks
These appear as dark lines which radiate away from sharp corners. It occurs because it is impossible for the scanner to "sample" or take enough projections of the object, which is usually metallic. It can also occur when an insufficient X-ray tube current is selected, and insufficient penetration of the x-ray occurs. These artifacts are also closely tied to motion during a scan. This type of artifact commonly occurs in head images around the pituitary fossa area.
- Partial volume effect
This appears as "blurring" over sharp edges. It is due to the scanner being unable to differentiate between a small amount of high-density material (e.g. bone) and a larger amount of lower density (e.g., cartilage). The processor tries to average out the two densities or structures, and information is lost. This can be partially overcome by scanning using thinner slices.
- Ring artifact
Probably the most common mechanical artifact, the image of one or many "rings" appears within an image. This is usually due to a detector fault.
- Noise artifact
This appears as graining on the image and is caused by a low signal to noise ratio. This occurs more commonly when a thin slice thickness is used. It can also occur when the power supplied to the X-ray tube is insufficient to penetrate the anatomy.
- Motion artifact
This is seen as blurring and/or streaking which is caused by movement of the object being imaged.
- Windmill
Streaking appearances can occur when the detectors intersect the reconstruction plane. This can be reduced with filters or a reduction in pitch.
- Beam hardening
This can give a "cupped appearance". It occurs when there is more attenuationin the center of the object than around the edge. This is easily corrected by filtration and software.
[edit]Three-dimensional (3D) image reconstruction
[edit]The principle
Because contemporary CT scanners offer isotropic or near isotropic, resolution, display of images does not need to be restricted to the conventional axial images. Instead, it is possible for a software program to build a volume by "stacking" the individual slices one on top of the other. The program may then display the volume in an alternative manner.[26]
[edit]Multiplanar reconstruction
Multiplanar reconstruction (MPR) is the simplest method of reconstruction. A volume is built by stacking the axial slices. The software then cuts slices through the volume in a different plane (usually orthogonal). Optionally, a special projection method, such asmaximum-intensity projection (MIP) or minimum-intensity projection (mIP), can be used to build the reconstructed slices.
MPR is frequently used for examining the spine. Axial images through the spine will only show one vertebral body at a time and cannot reliably show the intervertebral discs. By reformatting the volume, it becomes much easier to visualise the position of one vertebral body in relation to the others.
Modern software allows reconstruction in non-orthogonal (oblique) planes so that the optimal plane can be chosen to display an anatomical structure. This may be particularly useful for visualising the structure of the bronchi as these do not lie orthogonal to the direction of the scan.
For vascular imaging, curved-plane reconstruction can be performed. This allows bends in a vessel to be "straightened" so that the entire length can be visualised on one image, or a short series of images. Once a vessel has been "straightened" in this way, quantitative measurements of length and cross sectional area can be made, so that surgery or interventional treatment can be planned.
MIP reconstructions enhance areas of high radiodensity, and so are useful for angiographic studies. mIP reconstructions tend to enhance air spaces so are useful for assessing lung structure.
[edit]3D rendering techniques
- Surface rendering
- A threshold value of radiodensity is set by the operator (e.g. a level that corresponds to bone). From this, a three-dimensional model can be constructed using edge detection image processing algorithms and displayed on screen. Multiple models can be constructed from various different thresholds, allowing different colors to represent each anatomical component such as bone, muscle, and cartilage. However, the interior structure of each element is not visible in this mode of operation.
- Volume rendering
- Surface rendering is limited in that it will only display surfaces which meet a threshold density, and will only display the surface that is closest to the imaginary viewer. In volume rendering, transparency and colors are used to allow a better representation of the volume to be shown in a single image—e.g. the bones of the pelvis could be displayed as semi-transparent, so that even at an oblique angle, one part of the image does not conceal another.
[edit]Image segmentation
Main article: Segmentation (image processing)
Where different structures have similar radiodensity, it can become impossible to separate them simply by adjusting volume rendering parameters. The solution is called segmentation, a manual or automatic procedure that can remove the unwanted structures from the image.
[edit]Example
Some slices of a cranial CT scan are shown below. The bones are whiter than the surrounding area. (Whiter means higher attenuation.) Note the blood vessels (arrowed) showing brightly due to the injection of an iodine-based contrast agent.
A volume rendering of this volume clearly shows the high density bones.
After using a segmentation tool to remove the bone, the previously concealed vessels can now be demonstrated.
[edit]See also
[edit]References
- ^ "computed tomography—Definition from the Merriam-Webster Online Dictionary". Retrieved 2009-08-18.
- ^ a b Herman, G. T., Fundamentals of computerized tomography: Image reconstruction from projection, 2nd edition, Springer, 2009
- ^ Smith-Bindman R, Lipson J, Marcus R, et al. (December 2009). "Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer". Arch. Intern. Med. 169 (22): 2078–86. doi:10.1001/archinternmed.2009.427. PMID 20008690.
- ^ Berrington de González A, Mahesh M, Kim KP, et al. (December 2009). "Projected cancer risks from computed tomographic scans performed in the United States in 2007". Arch. Intern. Med. 169 (22): 2071–7.doi:10.1001/archinternmed.2009.440. PMID 20008689.
- ^ MeSH Tomography,+X-Ray+Computed
- ^ Richmond, Caroline (September 18, 2004). "Obituary—Sir Godfrey Hounsfield". BMJ (London, UK: BMJ Group) 2004:329:687 (18 September 2004). Retrieved September 12, 2008.
- ^ Filler, AG (2009): The history, development, and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, DTI: Nature Precedings DOI: 10.1038/npre.2009.3267.5.
- ^ "The Beatles greatest gift... is to science". Whittington Hospital NHS Trust. Retrieved 2007-05-07.
- ^ Novelline, Robert. Squire's Fundamentals of Radiology. Harvard University Press. 5th edition. 1997. ISBN 0-674-83339-2.
- ^ Hart, D; Wall B F (2002). "Radiation exposure of the UK population from Medical and Dental X-ray examinations" ([dead link] – Scholar search). NRPB report W-4.
- ^ Lee HK, Park SJ, Yi BH. Multidetector CT reveals diverse variety of abdominal hernias. Diagnostic Imaging. 2010;32(5):27-31.
- ^ "Ankle Fractures". orthoinfo.aaos.org. American Association of Orthopedic Surgeons. Retrieved 2010-05-30.
- ^ Buckwalter, Kenneth A. et.al. (11 September 2000). "Musculoskeletal Imaging with Multislice CT". ajronline.org. American Journal of Roentgenology. Retrieved 2010-05-22.
- ^ Hart, D.; Wall (2004). "UK population dose from medical X-ray examinations". European Journal of Radiology 50 (3): 285–291.doi:10.1016/S0720-048X(03)00178-5. PMID 15145489.
- ^ a b c d e f g Brenner DJ, Hall EJ (November 2007). "Computed tomography—an increasing source of radiation exposure". N. Engl. J. Med. 357 (22): 2277–84. doi:10.1056/NEJMra072149. PMID 18046031.
- ^ Donnelly, Lane F.; et al (1 February 2001). "Minimizing Radiation Dose for Pediatric Body Applications of Single-Detector Helical CT". American Journal of Roentgenology 176 (2): 303–6. PMID 11159061.
- ^ Brian R. Subach M.D., F.A.C.S et. al. "Reliability and accuracy of fine-cut computed tomography scans to determine the status of anterior interbody fusions with metallic cages" The Spine Journal 2008 Nov-Dec;8(6):998-1002.
- ^ Brenner, David J.; et al. (1 February 2001). "Estimated Risks of Radiation-Induced Fatal Cancer from Pediatric CT". American Journal of Roentgenology 176 (176): 289–296. PMID 11159059.
- ^ a b c Brenner D, Elliston C, Hall E, Berdon W (February 2001). "Estimated risks of radiation-induced fatal cancer from pediatric CT". AJR Am J Roentgenol 176 (2): 289–96. PMID 11159059.
- ^ a b c Roxanne Nelson (December 17, 2009). "Thousands of New Cancers Predicted Due to Increased Use of CT". Medscape. Retrieved January 2, 2010.
- ^ Khamsi, Roxanne (2007). New Scientist. 11 May 2007.
- ^ Larson DB, Rader SB, Forman HP, Fenton LZ (August 2007). "Informing parents about CT radiation exposure in children: it's OK to tell them". AJR Am J Roentgenol 189 (2): 271–5. doi:10.2214/AJR.07.2248.PMID 17646450.
- ^ a b c d Shrimpton, P.C; Miller, H.C; Lewis, M.A; Dunn, M. Doses from Computed Tomography (CT) examinations in the UK - 2003 Review
- ^ "Radiation Exposure during Cardiac CT: Effective Doses at Multi–Detector Row CT and Electron-Beam CT". Radiology.rsnajnls.org. 2002-11-21. Retrieved 2009-10-13.
- ^ Simpson, Graham (2009). "Thoracic computed tomography: principles and practice" (PDF). Australian Prescriber, 32:4. Retrieved September 25, 2009.
- ^ Udupa, J.K. and Herman, G. T., 3D Imaging in Medicine, 2nd Edition, CRC Press, 2000
[edit]External links
This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by removing excessive and inappropriate external links or by converting links into footnote references. (February 2010) |
- Open-source computed tomography simulator with educational tracing displays
- idoimaging.com: Free software for viewing CT and other medical imaging files
- CT Artefacts by David Platten
- DigiMorph A library of 3D imagery based on CT scans of the internal and external structure of living and extinct plants and animals.
- MicroCT and calcified tissues A website dedicated to microCT in the microscopic analysis of calcified tissues.
- Free Radiology Resource for Radiologists, Radiographers, and Technical Assistance
- Radiation Risk Calculator Calculate cancer risk from CT scans and xrays.
- CT scanner video - gantry
- CT in your clinical practice by Gregory J. Kohs and Joel Legunn.
- Coronary CT angiography by Eugene Lin
- CT physics lecture excellent video lectures about physics in computed tomography
- Software and algorithms for X-ray computed tomography
No comments:
Post a Comment